Thanks! You've successfully subscribed to the BONEZONE®/OMTEC® Monthly eNewsletter!

Please take a moment to tell us more about yourself and help us keep unwanted emails out of your inbox.

Choose one or more mailing lists:
BONEZONE/OMTEC Monthly eNewsletter
OMTEC Conference Updates
Advertising/Sponsorship Opportunities
Exhibiting Opportunities
* Indicates a required field.

New Trauma Technologies Emerge to Treat Infections

Approach #3) Modifying Surfaces with Nanotechnology

Tyber Medical worked with Thomas Webster, Ph.D., Chair and Professor of Chemical Engineering at Northeastern University, to develop its process to prevent infections. Tyber Medical is using nanotechnology with its BioTy™ Modified Surface Treatment, which can be applied to titanium, stainless steel, cobalt chrome and PEEK. The surface modification process creates a texture designed to be a bacteriostatic surface to reduce the adhesion of bacteria and biofilm formation.

Tyber Medical has received two FDA 510(k) clearances for BioTy on the company’s headed, headless and snap-off screw systems. The systems are available to the company's private label partners and are indicated for use in the extremities for bone fixation, bone reconstruction, osteotomies, arthrodesis, joint fusion and fracture repair.

Dr. Thomas Webster 111x143
Webster has studied the use of ceramic nanomaterials to control surface energy to decrease infection, promote bone growth and inhibit inflammation.

“Nanotechnology allows you to increase the surface area of your implant. So if you took a ceramic implant and made it out of nanomaterials, you’d have much more surface energy,” he says. “That allows you to control the charge of your surface, which also allows you to increase the absorption of things like LubriSyn, so you can keep that ceramic from becoming infected.”


Not surprisingly, each company employing or developing these new technologies has arguments for their approach and against others.

Bohdan Chopko PhD MD Silver Bullet Therapeutics 110x143
Silver Bullet Therapeutics’ leadership, for example, is skeptical that coatings can prevent infections in trauma.

“You could take an antibiotic and paint it on, which sounds like a great idea, but it really isn’t,” says Bohdan Chopko, M.D., Ph.D., Co-Founder of Silver Bullet Therapeutics and Associate Professor of Neurosurgery for Stanford University. “The antibiotic-coated device idea has a lot of issues, from patient sensitivity to antibiotics, to controlling the release, to having it scrape off if you’re placing a screw into bone.”

Further, there are distinct issues with technologies that elute a pharmacological drug or a metal ion, versus technologies that modify surfaces, says Rui Ferreira, Vice President of Research & Development at Tyber Medical.

“The challenge is that either one of those will work for a time, but a dose response dilution will be associated,” he says. “It’s going to start off having an effect, but will change over time because as it elutes, it leaches off and that causes challenges from FDA.”

Webster and Ferreira agree that antibiotics aren’t cutting it and may be breeding resistant strains of infections.

“The challenge with orthopaedic implants is that once bacteria colonizes on implants and forms biofilms, regular pharmaceutical treatments can’t eradicate the infection; you can’t get it killed and cleaned off of the implant,” Ferreira says.

The widespread production, use and misuse of antibiotics have contributed to the next generation of drug resistant infectious organisms, commonly called superbugs.

“The problem is that we thought antibiotics would be the solution, so that was really the only approach. We know now that doesn’t work,” Webster says. He added that new chemistries are emerging to kill bacteria and increase bone growth, such as selenium, though they would likely take over a decade for FDA to approve.

Despite this activity, it is too early to determine whether these types of devices will prevent infections. Research conducted outside of trauma, such as the use of sensors in joint replacement stems, may offer a future solution. Further, the issue of whether or not hospitals and surgery centers will actually pay for new technologies and cutting-edge devices will ultimately depend on long-term outcomes to demonstrate cost savings. Companies commercializing these technologies argue that if a certain patient population is prone to infection, a higher price might be justified if the technology can prevent infection.

Send comments on this article to This email address is being protected from spambots. You need JavaScript enabled to view it..

Photo Courtesy of PolyPid


Security code