Thanks! You've successfully subscribed to the BONEZONE®/OMTEC® Monthly eNewsletter!

Please take a moment to tell us more about yourself and help us keep unwanted emails out of your inbox.

Choose one or more mailing lists:
BONEZONE/OMTEC Monthly eNewsletter
OMTEC Conference Updates
Advertising/Sponsorship Opportunities
Exhibiting Opportunities
* Indicates a required field.

New Trauma Technologies Emerge to Treat Infections

In the trauma market, the third-largest segment in the orthopaedic industry, technologies intended to minimize post-surgical infections are emerging as a potential solution to address rising healthcare costs.

Infection control has been on the radar of various orthopaedic device companies, from start-up to top five. Earlier this year, Stryker announced its $2.7 billion acquisition of Sage, a developer and manufacturer of disposable products targeted to reduce “Never Events” such as infections. In 2015, DePuy Synthes mentioned infection control as a priority, though they offered little detail.

Though post-surgical infections can occur in any segment in orthopaedics, trauma procedures may be more prone to infections due to the unexpected and urgent nature of those cases.

Several OEMs have introduced technologies to address infection control using various materials and techniques, such as antibiotic coatings, surface modification, combination devices, disposables and sterile instruments. Here, we examine how these approaches work.

Approach #1) Tri-Calcium Phosphate Bone Void Filler

PolyPid is conducting a clinical trial of BonyPid-1000™, described by the company as a drug/device combination containing tri-calcium phosphate bone void filler and the company’s PLEX platform technology. The PLEX encapsulation matrix contains an antibiotic that is released locally over 30 days, says Dikla Czaczkes Akselbrad, PolyPid’s Chief Strategy Officer.

The BonyPid approach combines four attributes: local administration, a broad spectrum antibiotic, pre-determined and prolonged periods of release and a small, safe overall dose that generates high local concentration.

Local administration plays a particularly important role in this approach, Czaczkes Akselbrad says.

Dikla PolyPid 110x143“The standard of care includes systemic administration [of antibiotics into the bone void], which is limited due to low penetration into the needed site. Local delivery may overcome this issue. However, the approved local solutions are characterized by short-term and non-controlled release of the entrapped drug,” she says.

“Currently, in the U.S., the only approved local delivery is based on a cement polymer that releases an effective amount of antibiotics over a short period (several days), which is also characterized by high burst release. This release profile is limited in the eradication of significant bacterial load, and can even lead to resistant strains of bacteria.”

BonyPid-1000 is undergoing a pivotal clinical study for CE Mark approval, and PolyPid plans to submit an IDE by the end of 2016 for further FDA approval.

Approach #2) Antimicrobial Silver Ion-Eluting Bone Screw

Silver Bullet Therapeutics’ approach to preventing infections in trauma is the OrthoFuzIon Antimicrobial Bone Screw, which uses an electrical charge to release a cloud of antimicrobial silver ions around the implanted device. The product received its CE Mark in March 2015, and FDA approval is expected in 2016.

The system is powered by a self-sustaining battery that co-sputters silver with platinum to release silver ions into the local area around the implant, creating that cloud of anti-infectivity, according to Paul Chirico, Co-Founder, President and CEO of Silver Bullet Therapeutics.

Paul Chirico Silver Bullet Therapeutics 110x141
“The wonderful thing about silver is that it’s localized, so it stays where you need it,” he says. “That’s also the bad thing about silver. It’s not a systemic, unlike some companies that have gone in the direction of antibiotics, which are systemic and have tremendous hypersensitivities associated with them.”

Chirico noted that the company developed bone screws to prevent infections first, because trauma is the “toughest area in orthopaedics” to mitigate post-surgical infections.